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1. Executive Summary
Databricks SQL (DB SQL) represents a paradigm shift in how organizations approach analytics on the Lakehouse architecture. Unlike traditional data warehouses that require data movement and transformation into proprietary formats, Databricks SQL provides a powerful SQL analytics experience directly on your Delta Lake tables, enabling real-time insights without data duplication.
Why Databricks SQL?
Unified Analytics Platform: Databricks SQL bridges the gap between data engineering and business intelligence. Data engineers can use the same Delta Lake tables for both ETL pipelines and analytics, eliminating data silos and reducing time-to-insight from days to minutes.
Performance at Scale: Built on the Photon engine—a vectorized query engine written in C++—Databricks SQL delivers up to 12x faster query performance compared to traditional Spark SQL. This makes it suitable for interactive dashboards serving hundreds of concurrent users.
Cost Efficiency: The serverless compute model eliminates cluster management overhead and enables true pay-per-query economics. Organizations typically see 30-50% cost reduction compared to always-on warehouse solutions.
Enterprise Security: Native integration with Unity Catalog provides centralized governance, fine-grained access control, and complete audit trails—essential for regulated industries.
Target Audience
This guide serves both technical implementers and decision-makers:
Data Engineers will learn configuration best practices and optimization techniques
Data Analysts will discover advanced SQL features and dashboard creation patterns
Architects will understand integration patterns and security models
Platform Teams will gain insights into monitoring and cost management
2. SQL Warehouse Architecture
Understanding the architecture of SQL Warehouses is fundamental to making informed decisions about configuration, sizing, and optimization. This section provides a comprehensive overview of how SQL Warehouses process queries and manage resources.
2.1 Warehouse Types
Databricks offers three warehouse types, each designed for specific use cases and operational models. Choosing the right type impacts both performance and cost.
	Type
	Description
	Use Case
	Cost Model

	**Serverless**
	Fully managed, instant startup
	Production BI, variable workloads
	Pay per query

	**Pro**
	Customer-managed with advanced features
	Heavy analytics, predictable workloads
	Pay per DBU

	**Classic**
	Customer-managed, basic features
	Development, cost-sensitive
	Pay per DBU



Serverless Warehouses are the recommended choice for most production workloads. They provide instant startup (typically under 10 seconds), automatic scaling, and eliminate the need for capacity planning. The serverless model is particularly advantageous for:
BI dashboards with variable usage patterns
Ad-hoc query workloads that spike during business hours
Organizations without dedicated platform teams
Pro Warehouses offer more control over compute resources and are suitable when you need:
Predictable pricing for budgeting purposes
Specific instance types for compliance requirements
Custom networking configurations (VPC peering, private endpoints)
Classic Warehouses are primarily used for development and testing where advanced features aren't required. They're being phased out in favor of Pro warehouses.
2.2 Architecture Overview
The following diagram illustrates the layered architecture of a SQL Warehouse and how queries flow from BI tools to the underlying data.
┌─────────────────────────────────────────────────────────────────────────────┐
│                      SQL WAREHOUSE ARCHITECTURE                              │
├─────────────────────────────────────────────────────────────────────────────┤
│                                                                              │
│   ┌─────────────────────────────────────────────────────────────────────┐   │
│   │                    BI TOOLS & APPLICATIONS                          │   │
│   │  Tableau │ Power BI │ Looker │ dbt │ Custom Apps │ JDBC/ODBC       │   │
│   └─────────────────────────────────────────────────────────────────────┘   │
│                                      │                                       │
│                                      ▼                                       │
│   ┌─────────────────────────────────────────────────────────────────────┐   │
│   │                    SQL WAREHOUSE ENDPOINT                           │   │
│   │              (Load Balancing, Query Routing)                        │   │
│   └─────────────────────────────────────────────────────────────────────┘   │
│                                      │                                       │
│                                      ▼                                       │
│   ┌─────────────────────────────────────────────────────────────────────┐   │
│   │                    COMPUTE CLUSTERS                                 │   │
│   │  ┌───────────┐  ┌───────────┐  ┌───────────┐  ┌───────────┐       │   │
│   │  │ Cluster 1 │  │ Cluster 2 │  │ Cluster 3 │  │ Cluster N │       │   │
│   │  │  (Photon) │  │  (Photon) │  │  (Photon) │  │  (Photon) │       │   │
│   │  └───────────┘  └───────────┘  └───────────┘  └───────────┘       │   │
│   │              Auto-scaling based on queue depth                     │   │
│   └─────────────────────────────────────────────────────────────────────┘   │
│                                      │                                       │
│                                      ▼                                       │
│   ┌─────────────────────────────────────────────────────────────────────┐   │
│   │                    QUERY EXECUTION ENGINE                           │   │
│   │  ┌─────────────┐  ┌─────────────┐  ┌─────────────┐                │   │
│   │  │   Photon    │  │  Result     │  │   Query     │                │   │
│   │  │   Engine    │  │   Cache     │  │  Optimizer  │                │   │
│   │  └─────────────┘  └─────────────┘  └─────────────┘                │   │
│   └─────────────────────────────────────────────────────────────────────┘   │
│                                      │                                       │
│                                      ▼                                       │
│   ┌─────────────────────────────────────────────────────────────────────┐   │
│   │                    DATA LAYER (Delta Lake)                          │   │
│   │            Unity Catalog │ Delta Tables │ Cloud Storage            │   │
│   └─────────────────────────────────────────────────────────────────────┘   │
│                                                                              │
└─────────────────────────────────────────────────────────────────────────────┘
Key Architecture Components:
SQL Warehouse Endpoint: A stable HTTPS endpoint that receives all incoming queries. It handles authentication, query parsing, and intelligent routing to available clusters.
Compute Clusters: The actual compute resources running Photon. Multiple clusters can serve a single warehouse, providing horizontal scalability. Clusters auto-scale based on query queue depth.
Photon Engine: A native vectorized query engine that processes data in columnar batches, leveraging modern CPU architectures for maximum throughput. Photon automatically accelerates compatible queries.
Result Cache: A distributed cache that stores query results. Identical queries return cached results instantly, dramatically improving dashboard performance.
Query Optimizer: Analyzes query plans and applies cost-based optimization, including predicate pushdown, column pruning, and join reordering.
3. Warehouse Configuration
Proper warehouse configuration is critical for balancing performance, cost, and user experience. This section covers sizing guidelines and configuration methods.
3.1 Sizing Guidelines
Warehouse sizing depends on three primary factors: query complexity, concurrency requirements, and data volume. The following table provides general guidance, but actual requirements should be validated through load testing.
	Warehouse Size
	Cluster Resources
	Concurrent Queries
	Use Case

	**2X-Small**
	Minimal
	2-4
	Development, testing

	**X-Small**
	Small
	4-8
	Light BI, small team

	**Small**
	Medium
	8-16
	Standard BI workloads

	**Medium**
	Large
	16-32
	Heavy analytics

	**Large**
	X-Large
	32-64
	Enterprise BI

	**X-Large**
	2X-Large
	64-128
	Mission-critical



Sizing Considerations:
Query Complexity: Aggregations over large datasets, complex joins, and window functions require more resources than simple SELECT queries
Data Volume: Tables with billions of rows need larger warehouses for acceptable response times
Concurrency: Dashboard refreshes during business hours create burst patterns that require scaling headroom
SLA Requirements: Mission-critical dashboards may need over-provisioning to ensure consistent response times
Auto-scaling Configuration: For production workloads, configure multiple clusters with auto-scaling. The warehouse will add clusters when query queue depth exceeds thresholds and remove them during idle periods.
3.2 Create Warehouse Using Terraform
Infrastructure as Code (IaC) is the recommended approach for managing SQL Warehouses in production environments. Terraform provides declarative configuration, version control, and consistent deployments across environments.
The following Terraform configuration creates a production-grade SQL Warehouse with auto-scaling, Photon acceleration, and proper tagging for cost allocation.
resource "databricks_sql_warehouse" "production" {
  name             = "Production Analytics Warehouse"
  cluster_size     = "Medium"
  min_num_clusters = 1
  max_num_clusters = 10
  auto_stop_mins   = 30

  enable_photon             = true
  enable_serverless_compute = true
  warehouse_type            = "PRO"

  channel {
    name = "CHANNEL_NAME_CURRENT"
  }

  tags {
    custom_tags {
      key   = "Environment"
      value = "Production"
    }
    custom_tags {
      key   = "CostCenter"
      value = "Analytics"
    }
  }
}
Configuration Parameters Explained:
cluster_size: Determines the compute power per cluster. "Medium" provides a good balance for most analytics workloads
min_num_clusters: Minimum clusters to keep running. Set to 1 for always-on availability, 0 for cost savings
max_num_clusters: Maximum clusters for auto-scaling. Size based on expected peak concurrency
auto_stop_mins: Idle timeout before stopping. 30 minutes balances responsiveness with cost
enable_photon: Always enable for production workloads—provides 3-8x performance improvement
enable_serverless_compute: Recommended for most workloads; provides instant scaling and simplified management
3.3 Create Warehouse Using Python SDK
For programmatic warehouse management, such as automated provisioning or integration with CI/CD pipelines, the Databricks Python SDK provides a clean interface.
from databricks.sdk import WorkspaceClient
from databricks.sdk.service.sql import (
    CreateWarehouseRequest,
    EndpointTagPair,
    Channel
)

w = WorkspaceClient()

warehouse = w.warehouses.create_and_wait(
    name="Production Analytics Warehouse",
    cluster_size="Medium",
    min_num_clusters=1,
    max_num_clusters=10,
    auto_stop_mins=30,
    enable_photon=True,
    enable_serverless_compute=True,
    warehouse_type="PRO",
    channel=Channel(name="CHANNEL_NAME_CURRENT"),
    tags=EndpointTagPair(
        custom_tags=[
            {"key": "Environment", "value": "Production"},
            {"key": "CostCenter", "value": "Analytics"}
        ]
    )
)

print(f"Created warehouse: {warehouse.id}")
SDK Usage Best Practices:
Use create_and_wait() to ensure the warehouse is fully provisioned before proceeding
Store warehouse IDs in configuration management for downstream processes
Implement proper error handling for quota limits and naming conflicts
4. Query Optimization
Query optimization is both an art and a science. Well-optimized queries can run 10-100x faster than naive implementations, directly impacting user experience and compute costs. This section covers essential optimization techniques.
4.1 Query Best Practices
The following patterns represent common optimization opportunities. Each example shows an anti-pattern and the recommended approach.
Column Selection: Always specify only the columns you need. Selecting all columns (SELECT *) reads unnecessary data and prevents column pruning optimizations.
-- BAD: Reads all columns from storage
SELECT * FROM large_table;

-- GOOD: Reads only required columns (enables column pruning)
SELECT customer_id, order_date, amount
FROM large_table;
Partition Pruning: When filtering on partition columns, use predicates that enable partition pruning. Wrapping partition columns in functions defeats this optimization.
-- BAD: Function prevents partition pruning
SELECT * FROM orders
WHERE YEAR(order_date) = 2025;

-- GOOD: Direct comparison enables partition pruning
SELECT * FROM orders
WHERE order_date >= '2025-01-01' AND order_date < '2026-01-01';
Broadcast Joins: For small lookup tables (typically under 100MB), broadcast hints eliminate expensive shuffle operations by replicating the small table to all executors.
-- Broadcast hint for small dimension table
SELECT /*+ BROADCAST(dim_product) */
    f.*, p.product_name
FROM fact_sales f
JOIN dim_product p ON f.product_id = p.product_id;
Filter Column Functions: Avoid applying functions to columns in WHERE clauses. Functions prevent index usage and predicate pushdown.
-- BAD: Function on filter column prevents optimization
SELECT * FROM orders
WHERE UPPER(status) = 'COMPLETED';

-- GOOD: Store data in correct case, use direct comparison
SELECT * FROM orders
WHERE status = 'COMPLETED';
EXISTS vs IN: For subquery filters, EXISTS typically performs better than IN because it can short-circuit evaluation once a match is found.
-- BAD: IN subquery loads all matching IDs into memory
SELECT * FROM customers
WHERE customer_id IN (
    SELECT customer_id FROM orders WHERE amount > 1000
);

-- GOOD: EXISTS short-circuits after first match
SELECT * FROM customers c
WHERE EXISTS (
    SELECT 1 FROM orders o
    WHERE o.customer_id = c.customer_id AND o.amount > 1000
);
4.2 Understanding Query Execution Plans
The EXPLAIN command reveals how the query optimizer plans to execute your query. Understanding execution plans is essential for identifying optimization opportunities.
-- Basic execution plan
EXPLAIN SELECT
    c.customer_name,
    SUM(o.amount) as total_spend
FROM orders o
JOIN customers c ON o.customer_id = c.customer_id
WHERE o.order_date >= '2025-01-01'
GROUP BY c.customer_name;

-- Extended plan with statistics
EXPLAIN EXTENDED SELECT ...;

-- Cost estimates for each operation
EXPLAIN COST SELECT ...;

-- Human-readable formatted output
EXPLAIN FORMATTED SELECT ...;
Key Elements to Look For:
Scan Operations: Check if Delta scans use file pruning and partition pruning
Join Types: BroadcastHashJoin is fastest for small tables; SortMergeJoin handles large-large joins
Exchange Operations: Indicates data shuffling between executors (expensive)
Filter Pushdown: Filters should appear as close to scan operations as possible
4.3 Statistics and Optimization
The query optimizer relies on table and column statistics to make cost-based decisions. Accurate statistics lead to better join ordering and more efficient plans.
-- Collect basic table statistics (row count, size)
ANALYZE TABLE orders COMPUTE STATISTICS;

-- Collect detailed column statistics
ANALYZE TABLE orders COMPUTE STATISTICS FOR ALL COLUMNS;

-- Collect for specific columns (recommended for large tables)
ANALYZE TABLE orders
COMPUTE STATISTICS FOR COLUMNS customer_id, product_id, order_date, amount;

-- View table statistics
DESCRIBE EXTENDED orders;

-- View column-level statistics
DESCRIBE EXTENDED orders customer_id;
Statistics Best Practices:
Run ANALYZE after major data loads or significant table changes
Focus on columns used in JOIN conditions and WHERE clauses
For frequently updated tables, schedule periodic statistics refresh
Column statistics include min, max, null count, distinct count, and histograms
5. Advanced SQL Features
Databricks SQL supports the full range of modern SQL capabilities. Mastering these features enables complex analytics that would otherwise require custom code.
5.1 Window Functions
Window functions perform calculations across sets of rows related to the current row. Unlike aggregate functions, they don't collapse rows—each row retains its identity while gaining access to aggregate values.
Running Totals: Calculate cumulative sums that reset by partition.
SELECT
    customer_id,
    order_date,
    amount,
    SUM(amount) OVER (
        PARTITION BY customer_id
        ORDER BY order_date
        ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
    ) as running_total
FROM orders;
Ranking Functions: Assign rank values based on ordering within partitions.
SELECT
    customer_id,
    amount,
    ROW_NUMBER() OVER (ORDER BY amount DESC) as rank,
    DENSE_RANK() OVER (ORDER BY amount DESC) as dense_rank,
    PERCENT_RANK() OVER (ORDER BY amount DESC) as percentile
FROM orders;
Time Series Analysis with LAG/LEAD: Access values from previous or subsequent rows without self-joins.
SELECT
    customer_id,
    order_date,
    amount,
    LAG(amount, 1) OVER (PARTITION BY customer_id ORDER BY order_date) as prev_amount,
    LEAD(amount, 1) OVER (PARTITION BY customer_id ORDER BY order_date) as next_amount,
    amount - LAG(amount, 1) OVER (PARTITION BY customer_id ORDER BY order_date) as change
FROM orders;
Moving Averages: Calculate rolling statistics over a defined window.
SELECT
    order_date,
    amount,
    AVG(amount) OVER (
        ORDER BY order_date
        ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
    ) as moving_avg_7day
FROM daily_sales;
First and Last Values: Retrieve boundary values within partitions.
SELECT
    customer_id,
    FIRST_VALUE(product_id) OVER (
        PARTITION BY customer_id ORDER BY order_date
    ) as first_product,
    LAST_VALUE(product_id) OVER (
        PARTITION BY customer_id
        ORDER BY order_date
        ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
    ) as last_product
FROM orders;
5.2 Common Table Expressions (CTEs)
CTEs improve query readability by breaking complex logic into named, reusable blocks. They're essential for maintaining large analytical queries.
Basic CTE: Create a named temporary result set.
WITH customer_totals AS (
    SELECT
        customer_id,
        SUM(amount) as total_spent
    FROM orders
    GROUP BY customer_id
)
SELECT
    c.customer_name,
    ct.total_spent
FROM customers c
JOIN customer_totals ct ON c.customer_id = ct.customer_id
WHERE ct.total_spent > 10000;
Multiple CTEs: Chain multiple CTEs for complex transformations.
WITH
daily_sales AS (
    SELECT
        order_date,
        SUM(amount) as daily_total
    FROM orders
    GROUP BY order_date
),
monthly_sales AS (
    SELECT
        DATE_TRUNC('MONTH', order_date) as month,
        SUM(daily_total) as monthly_total
    FROM daily_sales
    GROUP BY DATE_TRUNC('MONTH', order_date)
),
monthly_growth AS (
    SELECT
        month,
        monthly_total,
        LAG(monthly_total) OVER (ORDER BY month) as prev_month,
        (monthly_total - LAG(monthly_total) OVER (ORDER BY month)) /
            LAG(monthly_total) OVER (ORDER BY month) * 100 as growth_pct
    FROM monthly_sales
)
SELECT * FROM monthly_growth
WHERE growth_pct IS NOT NULL
ORDER BY month;
Recursive CTEs: Process hierarchical data like organizational structures or bill of materials.
WITH RECURSIVE org_hierarchy AS (
    -- Base case: top-level managers (no manager)
    SELECT
        employee_id,
        employee_name,
        manager_id,
        1 as level,
        ARRAY(employee_name) as path
    FROM employees
    WHERE manager_id IS NULL

    UNION ALL

    -- Recursive case: employees reporting to managers
    SELECT
        e.employee_id,
        e.employee_name,
        e.manager_id,
        h.level + 1,
        CONCAT(h.path, ARRAY(e.employee_name))
    FROM employees e
    JOIN org_hierarchy h ON e.manager_id = h.employee_id
)
SELECT * FROM org_hierarchy
ORDER BY level, employee_name;
5.3 PIVOT and UNPIVOT Operations
PIVOT transforms rows into columns, essential for creating cross-tabular reports. UNPIVOT performs the reverse operation.
PIVOT: Convert categorical values into column headers.
SELECT *
FROM (
    SELECT product_category, order_month, amount
    FROM monthly_sales
)
PIVOT (
    SUM(amount)
    FOR product_category IN ('Electronics', 'Clothing', 'Food', 'Other')
);
PIVOT with Multiple Aggregates: Create multiple columns per pivot value.
SELECT *
FROM monthly_sales
PIVOT (
    SUM(amount) as total,
    COUNT(*) as count
    FOR order_month IN (
        '2025-01' as jan,
        '2025-02' as feb,
        '2025-03' as mar
    )
);
UNPIVOT: Normalize wide tables into long format for analysis.
SELECT *
FROM quarterly_metrics
UNPIVOT (
    value FOR quarter IN (q1, q2, q3, q4)
);
5.4 Advanced Aggregations
Beyond basic GROUP BY, SQL provides powerful grouping operations for multi-dimensional analysis.
GROUPING SETS: Define custom aggregation levels in a single query.
SELECT
    COALESCE(region, 'All Regions') as region,
    COALESCE(product_category, 'All Categories') as category,
    SUM(amount) as total_sales
FROM sales
GROUP BY GROUPING SETS (
    (region, product_category),  -- Detail level
    (region),                     -- By region only
    (product_category),           -- By category only
    ()                            -- Grand total
);
CUBE: Generate all possible grouping combinations (2^n groups for n columns).
SELECT
    region,
    product_category,
    SUM(amount) as total_sales,
    GROUPING(region) as is_region_total,
    GROUPING(product_category) as is_category_total
FROM sales
GROUP BY CUBE (region, product_category);
ROLLUP: Generate hierarchical aggregations from most detailed to grand total.
SELECT
    region,
    product_category,
    product_name,
    SUM(amount) as total_sales
FROM sales
GROUP BY ROLLUP (region, product_category, product_name);
FILTER Clause: Apply conditional aggregation without CASE statements.
SELECT
    customer_id,
    COUNT(*) as total_orders,
    COUNT(*) FILTER (WHERE status = 'COMPLETED') as completed_orders,
    COUNT(*) FILTER (WHERE status = 'CANCELLED') as cancelled_orders,
    SUM(amount) FILTER (WHERE status = 'COMPLETED') as completed_amount
FROM orders
GROUP BY customer_id;
6. Result Caching
Result caching is a critical performance feature that can reduce query execution times from minutes to milliseconds. Understanding how caching works enables you to design queries that maximize cache hit rates.
6.1 How Caching Works
Databricks SQL employs a multi-tier caching strategy that operates at both the query result and data file levels.
Query Submitted
       │
       ▼
┌──────────────────────┐
│  Check Query Cache   │
│  (Exact match hash)  │
└──────────────────────┘
       │
       ├─── Cache Hit ───▶ Return cached result (milliseconds)
       │
       └─── Cache Miss
               │
               ▼
       ┌──────────────────────┐
       │  Check Delta Cache   │
       │  (File-level cache)  │
       └──────────────────────┘
               │
               ▼
       ┌──────────────────────┐
       │  Execute Query       │
       │  Cache Result        │
       └──────────────────────┘
Query Result Cache: Stores complete query results keyed by a hash of the SQL statement. Identical queries (including whitespace and casing) return cached results instantly.
Delta Cache: Stores recently accessed data files in local SSD storage. Even on cache misses, frequently accessed data reads from local storage rather than cloud object storage.
Cache Invalidation: Results are automatically invalidated when underlying tables change (Delta Lake transaction log is checked).
6.2 Cache Configuration
Query result caching is enabled by default, but understanding configuration options helps troubleshoot performance issues.
-- Enable query result caching (default: enabled)
SET spark.databricks.io.cache.enabled = true;

-- View query history with cache status
SELECT * FROM system.query.history
WHERE warehouse_id = 'xxx'
ORDER BY end_time DESC;

-- Check execution plan for cache usage
EXPLAIN SELECT * FROM orders WHERE order_date = '2025-01-24';
-- Look for "Scan Delta" vs "Scan CachedDelta"
6.3 Cache Best Practices
Design queries to maximize cache hit rates by ensuring determinism and consistency.
Avoid Non-deterministic Functions: Functions that produce different results each execution defeat caching.
-- BAD: Timestamp changes every execution, no cache hits
SELECT *, CURRENT_TIMESTAMP() as query_time FROM orders;

-- GOOD: Deterministic query, can be cached
SELECT * FROM orders WHERE order_date = '2025-01-24';
Use Deterministic LIMIT: LIMIT without ORDER BY produces non-deterministic results.
-- BAD: Different results possible, no caching
SELECT * FROM orders LIMIT 100;

-- GOOD: Deterministic ordering enables caching
SELECT * FROM orders ORDER BY order_id LIMIT 100;
Maintain Query Consistency: The cache key includes the exact query text, including case and whitespace.
-- These produce DIFFERENT cache entries:
SELECT customer_id FROM orders;
SELECT CUSTOMER_ID FROM orders;
select customer_id from orders;
7. Security and Access Control
Security in Databricks SQL leverages Unity Catalog for centralized governance. This section covers row-level and column-level security implementations.
7.1 Row-Level Security
Row-level security (RLS) restricts which rows a user can access based on their identity or group membership. This is essential for multi-tenant applications and regional data isolation.
Row Filter Functions: Create reusable filter logic that automatically applies to queries.
-- Create a row filter function
CREATE OR REPLACE FUNCTION sales.region_filter(region_param STRING)
RETURNS BOOLEAN
RETURN (
    region_param = current_user()
    OR is_member('global-analysts')
);

-- Apply row filter to table
ALTER TABLE sales.orders
SET ROW FILTER sales.region_filter ON (region);
Secure Views Alternative: For more complex logic or legacy systems, secure views provide row filtering.
CREATE OR REPLACE VIEW sales.orders_by_region AS
SELECT *
FROM sales.orders
WHERE region = CASE
    WHEN is_member('region-north-america') THEN 'NA'
    WHEN is_member('region-europe') THEN 'EU'
    WHEN is_member('region-asia') THEN 'APAC'
    WHEN is_member('global-analysts') THEN region
    ELSE NULL
END;
7.2 Column-Level Security with Data Masking
Column masking protects sensitive data by transforming values based on user privileges. This enables self-service analytics while maintaining data privacy.
Masking Functions: Create functions that return different values based on user context.
-- Create a masking function for email addresses
CREATE OR REPLACE FUNCTION mask_email(email STRING)
RETURNS STRING
RETURN CASE
    WHEN is_member('pii-viewers') THEN email
    ELSE CONCAT(LEFT(email, 2), '***@', SPLIT(email, '@')[1])
END;

-- Apply mask to column
ALTER TABLE customers
ALTER COLUMN email SET MASK mask_email;
Masked View Alternative: For backward compatibility or complex masking rules.
CREATE OR REPLACE VIEW customers_masked AS
SELECT
    customer_id,
    first_name,
    last_name,
    CASE
        WHEN is_member('pii-viewers') THEN email
        ELSE CONCAT(LEFT(email, 2), '***@', SPLIT(email, '@')[1])
    END as email,
    CASE
        WHEN is_member('pii-viewers') THEN phone
        ELSE CONCAT('***-***-', RIGHT(phone, 4))
    END as phone
FROM customers;
8. Dashboard and Visualization
Databricks SQL includes a native dashboard capability for creating interactive visualizations without external BI tools. This section covers effective dashboard query patterns.
8.1 Creating Effective Dashboard Queries
Dashboard queries should be optimized for responsiveness and include appropriate aggregations for visualization.
Sales Overview Dashboard: Time series data for trend visualization.
SELECT
    DATE_TRUNC('day', order_date) as date,
    COUNT(*) as orders,
    SUM(amount) as revenue,
    AVG(amount) as avg_order_value
FROM orders
WHERE order_date >= CURRENT_DATE - INTERVAL 30 DAYS
GROUP BY 1
ORDER BY 1;
Top Products Report: Ranking for bar charts and tables.
SELECT
    p.product_name,
    p.category,
    COUNT(*) as order_count,
    SUM(oi.quantity) as units_sold,
    SUM(oi.amount) as revenue
FROM order_items oi
JOIN products p ON oi.product_id = p.product_id
WHERE oi.order_date >= CURRENT_DATE - INTERVAL 30 DAYS
GROUP BY p.product_name, p.category
ORDER BY revenue DESC
LIMIT 20;
Customer Segmentation: Derived categories for pie charts and segment analysis.
SELECT
    CASE
        WHEN total_spent >= 10000 THEN 'Platinum'
        WHEN total_spent >= 5000 THEN 'Gold'
        WHEN total_spent >= 1000 THEN 'Silver'
        ELSE 'Bronze'
    END as segment,
    COUNT(*) as customer_count,
    SUM(total_spent) as segment_revenue
FROM (
    SELECT customer_id, SUM(amount) as total_spent
    FROM orders
    GROUP BY customer_id
)
GROUP BY 1
ORDER BY segment_revenue DESC;
8.2 Parameterized Queries
Parameters enable interactive filtering without creating multiple queries. Users can adjust parameters through dashboard widgets.
-- Date range parameter
SELECT *
FROM orders
WHERE order_date BETWEEN :start_date AND :end_date;

-- Multi-select parameter
SELECT *
FROM orders
WHERE status IN (:status_list);

-- Optional filter pattern (NULL = no filter)
SELECT *
FROM orders
WHERE (:customer_id IS NULL OR customer_id = :customer_id)
  AND (:min_amount IS NULL OR amount >= :min_amount);
9. Monitoring and Troubleshooting
Effective monitoring enables proactive performance management and rapid issue resolution. Databricks provides comprehensive query history through system tables.
9.1 Query History Analysis
The system.query.history table contains detailed information about every query executed against your warehouses.
Recent Query Performance: Identify slow queries for optimization.
SELECT
    query_id,
    user_name,
    query_text,
    status,
    duration,
    rows_produced,
    execution_end_time
FROM system.query.history
WHERE warehouse_id = 'your-warehouse-id'
    AND execution_end_time > CURRENT_TIMESTAMP - INTERVAL 1 HOUR
ORDER BY duration DESC
LIMIT 20;
Failed Queries: Investigate errors and patterns.
SELECT
    query_id,
    user_name,
    query_text,
    error_message,
    execution_end_time
FROM system.query.history
WHERE warehouse_id = 'your-warehouse-id'
    AND status = 'FAILED'
    AND execution_end_time > CURRENT_TIMESTAMP - INTERVAL 24 HOURS
ORDER BY execution_end_time DESC;
Slow Query Identification: Find queries exceeding performance thresholds.
SELECT
    query_id,
    user_name,
    query_text,
    duration,
    rows_produced,
    ROUND(rows_produced / (duration / 1000), 2) as rows_per_second
FROM system.query.history
WHERE warehouse_id = 'your-warehouse-id'
    AND duration > 60000  -- Greater than 1 minute
    AND execution_end_time > CURRENT_TIMESTAMP - INTERVAL 7 DAYS
ORDER BY duration DESC;
9.2 Warehouse Metrics
Aggregate metrics help understand usage patterns and capacity planning.
Hourly Utilization: Track usage patterns for capacity planning.
SELECT
    DATE_TRUNC('hour', start_time) as hour,
    COUNT(*) as query_count,
    AVG(duration) as avg_duration_ms,
    SUM(duration) as total_duration_ms,
    COUNT(DISTINCT user_name) as unique_users
FROM system.query.history
WHERE warehouse_id = 'your-warehouse-id'
    AND start_time > CURRENT_TIMESTAMP - INTERVAL 24 HOURS
GROUP BY 1
ORDER BY 1;
Queue Time Analysis: Identify capacity bottlenecks.
SELECT
    DATE_TRUNC('hour', start_time) as hour,
    AVG(queue_duration) as avg_queue_ms,
    MAX(queue_duration) as max_queue_ms,
    COUNT(*) FILTER (WHERE queue_duration > 5000) as queued_queries
FROM system.query.history
WHERE warehouse_id = 'your-warehouse-id'
    AND start_time > CURRENT_TIMESTAMP - INTERVAL 24 HOURS
GROUP BY 1
ORDER BY 1;
10. Integration Patterns
Databricks SQL integrates with a wide ecosystem of tools through standard protocols and APIs.
10.1 JDBC/ODBC Connection
The Databricks SQL connector provides native Python connectivity with optimized data transfer.
from databricks import sql

connection = sql.connect(
    server_hostname="your-workspace.cloud.databricks.com",
    http_path="/sql/1.0/warehouses/your-warehouse-id",
    access_token="your-access-token"
)

cursor = connection.cursor()
cursor.execute("SELECT * FROM orders LIMIT 10")
results = cursor.fetchall()

for row in results:
    print(row)

cursor.close()
connection.close()
10.2 dbt Integration
dbt (data build tool) integrates natively with Databricks SQL for transformation workflows.
# profiles.yml
your_project:
  target: prod
  outputs:
    prod:
      type: databricks
      catalog: production
      schema: analytics
      host: your-workspace.cloud.databricks.com
      http_path: /sql/1.0/warehouses/your-warehouse-id
      token: "{{ env_var('DBT_TOKEN') }}"
      threads: 4
10.3 REST API Integration
For custom integrations, the SQL Statement Execution API provides direct query access.
import requests

workspace_url = "https://your-workspace.cloud.databricks.com"
token = "your-access-token"
warehouse_id = "your-warehouse-id"

headers = {
    "Authorization": f"Bearer {token}",
    "Content-Type": "application/json"
}

# Execute SQL statement
response = requests.post(
    f"{workspace_url}/api/2.0/sql/statements/",
    headers=headers,
    json={
        "warehouse_id": warehouse_id,
        "statement": "SELECT COUNT(*) FROM orders",
        "wait_timeout": "30s"
    }
)

result = response.json()
print(result)
Document Control
	Field
	Value

	Version
	2.0

	Created
	2025-01-24

	Last Updated
	2025-01-29

	Next Review
	2025-04-29

	Author
	Data Platform Team



image1.png
#MAST=CH
DIGITAL








